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Background

Building Blocks of Silicon Photonics

Silicon Photonics

www.extremetech.com

IBM

Optical Circuits
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SensorsLight Detectors
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Integrated Photonics

Remaining challenge: 
nonreciprocal devices

Rapidly growing field has produced 
integrated optical circuits, 
detectors, modulators, etc…

Creating robust isolators and 
circulators remains a key 
challenge

Goal

Demonstrate robust nonreciprocal 
operation on-chip

Nonreciprocity:
Key tool to control 
signal routing and 
eliminate optical 
back-scatter.

Isolators and 
Circulators

?
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Nonreciprocal optics

Isolator: unidirectional light transmission Applications of nonreciprocal 
light propagation:

• Protect optical components (e.g. 
lasers) from back-scatter

• Separate forward- and backward-
propagating optical signals

Circulator: route optical signals
Based on magneto-optic effect
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Integrated nonreciprocal optics

Challenges

• High insertion losses
• Materials with strong magneto-

optic response are intrinsically 
lossy

• Resonant structures often 
necessary

• (Limits operation bandwidths to 
~GHz)

• Complex fabrication
• Challenging to integrate 

magneto-optic garnets with 
Si/SiN/InP circuits

• Not CMOS-compatible

• Requires magnetic fields to be 
present

Problem: Despite great efforts, it is 
difficult to adapt existing Faraday isolator 
technologies to integrated photonics

Silicon Chip

Goal: Implement nonreciprocal light 
propagation in integrated photonic circuits

Huang et al., IEEE JSTQE 22, 271 (2016) Bi et al., Nat. Photonics 5, 758 (2011)
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‘Wish list’ for integrated nonreciprocal optics

• Low insertion loss (<1 dB)

• Significant nonreciprocal contrast (>20 dB) 
over a large operating bandwidth (>1 nm)

• CMOS-compatible materials / no magnets

Ideal device One Proposal: Time Modulation

Theoretical proposals have shown 
time-modulation of optical 
waveguides as a promising path 
to achieve on-chip nonreciprocity
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How does this work?

Yu & Fan, Nat. Photonics 3, 91 (2009)

Poulton et al., Opt. Express 20, 19 (2009)
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ST Modulation: one path to nonreciprocity
Nonreciprocity by indirect inter-band 
transitions

Spatio-temporal modulation with 
wavevector 𝑞 and frequency Ω scatters 
light between distinct dispersion bands

This process is phase-matched in only 
one propagation direction

Condition for nonreciprocal operation:

𝑳 ≫
𝒗𝒈
𝛀

Interaction 
Length

Optical group 
velocity

Modulation 
Frequency

cm lengths for 10 GHz modulation!

Other critical ingredient: symmetry

Mode 1 Mode 2

+ -
ST Mod.

xy
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Non-magnetic nonreciprocity

Recent experimental work has explored methods to produce non-magnetic 
nonreciprocity.

Optomechanics Electro-optics Acousto-optics

Challenge: typically very 
narrowband (kHz-MHz) 

~GHz BW

Kang et al., Nat. Photonics 5, 549 (2011) Yu & Fan, Nat. Photonics 3, 91 (2009)

Shen et al., Nat. Photonics 10, 657 (2016) Lira et al., PRL 109, 3 (2012) Sohn, Kim, & Bahl, Nat. Photonics 12, 91 (2018)

Challenge: large intrinsic 
optical loss

Resonant structures to 
achieve nonreciprocity
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Non-magnetic nonreciprocity

Optomechanics Electro-optics Acousto-optics

Challenge: typically very 
narrowband (kHz-MHz) 

~GHz BW

Common challenge: how to induce robust 
spatiotemporal modulation over large interaction lengths?

Recent experimental work has explored methods to produce non-magnetic 
nonreciprocity.

Kang et al., Nat. Photonics 5, 549 (2011) Yu & Fan, Nat. Photonics 3, 91 (2009)

Shen et al., Nat. Photonics 10, 657 (2016) Lira et al., PRL 109, 3 (2012) Sohn, Kim, & Bahl, Nat. Photonics 12, 91 (2018)

xy

One solution:
Harness acousto-optic modulation 
from traveling elastic waves

Device concept: 
Silicon waveguide inter-band 
modulator utilizes optically driven 
acoustic waves to produce 
modulation over cm-length scales
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Silicon waveguide inter-band modulator
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Device Structure

Si

Si

SiO2

Optical Modes

Elastic Mode
u (r )x

Suspended silicon optomechanical
waveguide fabricated on SOI wafer

2.4 cm long device

Two ridge waveguides each guide 
symmetric and anti-symmetric optical 
modes

Low loss (total insertion losses <1 dB)

Elastic waves guided throughout 
structure

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Silicon waveguide inter-band modulator
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Device Structure

Si

Si

SiO2

Optical Modes

Elastic Mode
u (r )x

Operation Scheme

Acoustic drive 
created in one 
waveguide through 
optical forces

Modulates and 
mode-converts light 
in second 
waveguide through 
linear acousto-optic 
scattering

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Silicon waveguide inter-band modulator

Integrated mode multiplexers couple pump waves 
into distinct optical modes

These optical waves drive a travelling acoustic 
phonon at difference frequency Ω through 
electrostriction

Wavevector of driven phonon set 
through optical dispersion
(phonon wavevector tunability)

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Silicon waveguide inter-band modulator

Light injected in the forward
direction is mode-converted and 
frequency shifted if phase-matching 
is satisfied

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Silicon waveguide inter-band modulator

Result: travelling elastic wave 
breaks symmetry between forward-
and backward-propagating optical 
waves

Light injected in the backward
direction is not phase-matched to an 
inter-band transition, so it passes 
through the device unaffected

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).



14

Single-sideband Modulation

Measurement Scheme: 

PhotodiodeOutput Optical Spectrum:

Forward

Light is single-sideband frequency-shifted 
by −Ω with 37 dB suppression of unwanted 
components  

Analogous to acousto-optic modulator

Modulation efficiency ~1%

37 dB

Ω = 2𝜋×5.7 GHz
𝜆"
($) = 1550.0 nm
𝜆"
(&) = 1545.5 nm

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Single-sideband Modulation

Measurement Scheme: 

Photodiode

Output Optical Spectrum:

Forward Backward

Nonreciprocity!

Ω = 2𝜋×5.7 GHz
𝜆"
($) = 1550.0 nm
𝜆"
(&) = 1545.5 nm

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Nonreciprocal response

Photodiode

Ω = 2𝜋×5.7 GHz
𝜆"
($) = 1550.0 nm
𝜆"
(&) = variable

Experimental Response
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E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Nonreciprocal response

Characteristic broadband modulation with significant nonreciprocal contrast

Backward

Forward

𝜆"
($) = 1550.0 nm

Demonstrated nonreciprocal operation over ~nm bandwidths!

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).

Device 1 Device 2 Device 3
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Optical wavelength tuning
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• Driven phonon wavevector is directly related to optical pump wavelength

• Phonon wavevector determines modulator operation wavelength

Result: operation wavelength directly tunable through optical pump tuning

Demonstrated nonreciprocal operation across the entire c-band in a single device

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Summary
Summary

• Demonstrated broadband and low-loss nonreciprocal acousto-optic light 
scattering in a traveling-wave geometry

Takeaways

• Phonons can be a very useful tool for creating spatiotemporal modulation!

• With further work, broadband waveguide-integrated, acousto-optic isolators 
should be possible 

E.A. Kittlaus, N.T. Otterstrom, P. 
Kharel, S. Gertler, and P.T. Rakich, 
“Nonreciprocal Inter-band Brillouin 
Modulation.” Nat. Photonics 12, 613 
(2018).

E.A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P.T. Rakich. Nat. Photonics. 12, 613 (2018).
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Nonreciprocal Response
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Photodiode

Ω = 5.7 GHz
𝜆"
($) = 1550.0 nm
𝜆"
(&) = variable

Experimental Response
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Phonon Spectroscopy
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Modulation Efficiency

Measurement Scheme: 

Photodiode

Output Spectrum

Frequency
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